
Ordinypt Malware Analysis

By

Valthek

1

The last days appear a new ransomware called "Ordinypt" that targets German

users. This report talks about this malware and the reversing session to discover the

truth about this malware.

Ordinypt appears be a ransomware, but is a wiper. As you will see the malware

requests money for recover the files but the files are destroyed without any chance

to recover it from the malware creators.

So, lets start talking about this sample.

The sample with hash “3ba3272977dfe0d1a0c48ef6cb9a06b2" will be the sample

used for this analysis.

I. LOOKING THE MALWARE

The first action is look if the malware is packed or not. I use ExeInfo but you can use

PeID or another tool.

ExeInfo told us that is packed with MPRESS 2.12, so we can use some tool as the

program said us or try unpack manually.

Lets unpack it manually to learn about this packer.

Looking the sections we can found this:

2

The first one section called “.MPRESS1” have a size of 142KB, the second one called

“.MPRESS2” have 3.5KB and the last one 100.5KB.

The last one don’t have the Executable flag, so its not have the Entry Point to the

program (its have the resources of the binary). ExeInfo said us the EntryPoint is at

the offset in memory “0x8225D”, so, looking the sections we discover that the entry

point is in the second section.

Lets open in Olly the binary.

3

We are in the second section, so, lets start debugging all this code. After debugging

all this packer code finally arrive to the offset 0x455b30:

This point is the beginning of malware. The tricks that you can use to debug the

packer without any problem and quickly are:

⦁ Use hardware breakpoints to avoid loops. With this packer you can use

normal breakpoints but is useful learn to use hardware instead the normal

ones because some programs can use his own code to unpack, make a key,

or whatever think. A normal breakpoint puts a byte for the opcode “int3”

0xCC in the memory that you want break, so this memory is altered and this

4

programs can detect or have a wrong operation.

⦁ Look the jumps to keep all tracks under your control and put hardware

breakpoints in the addresses that finish some loops.

⦁ The packer use a lot of time calls to the next instruction following the call so

is easy keep the track.

⦁ The packer gets some exports from kernel32.dll as DeleteCriticalSection, etc.

You can put a bp in GetModuleHandleA or GetProcAddress to help you.

⦁ Finally the packer uses a jmp to reach the original binary unpacked in

memory.

So, with the malware unpacked in memory lets dump it to debugging, in the offset

0x455B30 use the plugin of OllyDump (or another one that makes the same) but

remember uncheck the rebuild imports option.

Now we have a binary with 628KB but its have a problem, the IAT is corrupted, so

lets fix it with ImportREC.

5

Fix the dump, and finally gets the malware with a size of 632KB (or 636KB) and with

the IAT fixed and ready to run without any packer.

The sections names remains as the name of the packer but don’t care about it.

Now lets open the malware using IDA to discover that this wiper is writed in Delphi

7.

IDA can help us with Delphi but is better use “Interactive Delphi Reconstructor”, so

lets open too the malware in this program and wait that its analyze all the code.

When its finish select the option “Tools->Map Generator” or “Tools->IDC

Generator”. In my case I use a map file, and with the plugin in Olly of “Load Map” I

load this map file to apply all info in the debugging session that Olly will save in the

UDD file for later if I needed.

The malware payload remains in the unit1.pas file in the code, so, lets start

debugging to reach the function called “_Unit2.InitUnits”. In this function the code

called a register in a big loop, we need wait that enters in the function called

“Unit1.Initialization” that is the function that starts the malware code. The anothers

calls belongs to Delphi starting his own libraries and units.

Finally we reached in the function that starts the malware in the offset “0x455194”.

6

The first action of the malware is check if have free space the disk of all logic units

starting from “A:” to “Z:” using the API “GetDiskFreeSpaceExA”.

In the case that some unit exists its will save a in a global var the free space of this

unit.

After this the malware access to the units starting from “C:\” to “P:\”.

Starting with “C:\” the malware concats the string of the unit with “*” to search for

all files and directories in this unit.

The malware starts looking using “FindFirst” from the SysUtils library of Delphi and

FindNext. For each file or directory founded, its checks the name with “.” and “..” to

avoid get the actual directory or the previous one.

7

Its checks if it is a directory or not, and if it is, call the same function in a recursive

way to enter in all subfolders in all tree of directories of the unit.

If its found a file checks that the file not is in some folders black listed. To make this

the malware uses the function “ExtractFileDir” of the SysUtils library.

The black list of the folders it is:

⦁ windows

⦁ Windows

⦁ program files

⦁ Program Files

⦁ Program Files (x86)

⦁ Programme

⦁ Programme (x86)

⦁ program files (x86)

⦁ programme

⦁ programme (x86)

⦁ programdata

The malware have a bug here. Its try avoid destroy the windows directory, but only

checks for two strings and not check if the windows folder have the name all in caps

(WINDOWS). So, sometimes the windows folder can be affected.

The malware checks the filename using the function “ExtractFileName” of the

8

SysUtils library to check that the file not is the ransom note with the german name

“Wo_sind_meine_Datein.html”.

If the file remains in some of the black listed list or have the ransom note name the

malware avoids this file.

If not its gets the extension of the file using the function “ExtractFileExt” of SysUtils

library. After this, its checks the extension with a long list of extensions. If have one

of them will destroy the data as I will explain now, if not its avoid this file.

The code quality is bad as you can see, because is a copy-paste of the same code or

macro extracting each time the extension of the file and compare with the new

extension to check.

The list of extensions affected for this is:

9

jpg
JPG
jpeg
JPEG
bmp
BMP
lnk
LNK
gif
GIF
wav
WAV
avi
AVI
mkv
MKV
pdf
PDF
zip
ZIP
rar
RAR
7z
7Z

mp3
MP3
mov
MOV
webm
WEBM
ogg
OGG
m4p
M4P
mpeg
MPEG
mpg
MPG
7zip
7ZIP
tif
TIF
tiff
TIFF
mp4
MP4
iso
ISO

exe
EXE
msi
MSI
txt
TXT
rtf
RTF
doc
DOC
docx
DOCX
xls
XLS
xlsx
XLSX
dat
DAT
dbDB
sql
SQL
odt
ODT
ods

ODS
ppt
PPTX
odp
ODP
xlt
XLT
pwm
PWM
html
HTML
css
CSS
asp
ASP
aspx
ASPX
xlm
XLM
js
JS
tsTS
java
JAVA

m3u
M3U
backup
BACKUP
back
BACK
cpp
CPP
psd
PSD
msg
MSG
xml
XML
sqlited
bSQL
ITEDB
sqlite3
SQLITE3
pptx
docm
DOCM
xlsm
XLSM

asm
ASM
eps
EPS
ai
AI
p12
P12
pem
PEM
ppk
PPK
csv
CSV
json
JSON
bat
BAT
ico
ICO
atn
ATN
svg
SVG

In case the file have a target extension the malware gets a random value to make a

random file name:

10

Usually the name have 13 characters. After it the malware gets another random

value from 0 to 0x3E80 and add to it 0x1F40 to make the new size of garbage that

will have the new “crypted” file.

With this size will fill a buffer with random chars, later will apply this buffer in the

file.

The next operation is get the file without path and delete it:

One important thing here is, the malware delete the file but not overwrite with

garbare or null all his information, so, the file will remains in the raw hard disk

untouched (later, with luck, perhaps can be recovered using some programa as

Recuva).

After delete it concat the path with the new file random name, create the file and

fill with the buffer with garbage maked before. Finally its close the handle to the

new file, and create the ransom note in the same folder with the name

“Wo_sind_meine_Datein.html”.

11

As said before the quality of the code is bad, because this ransom note is created for

EACH file that destroy, before delete it, and later make again instead check if the

folder have it previously or not with the ransom info.

After finish all process in all units the malware create a mutex with the name

“HSDFSD-HFSD-3241-91E7-ASDGSDGHH” and checks if exists looking with

GetLastError API. If exists the malware exists and if not the malware create his form

(invisible form) and keeps running in the memory.

II. RECOVER FILES

The malware drops as said before a ransom note in german as this:

12

But the malware destroy files, so, a victim CANT recover the files paying (anyways

not is a good idea pay to the ransomware makers because, as you can see, they can

lie and you cant get the files recovered). In this note they said that uses AES to crypt

your files and request you about 0.12 BTC (more or less 600 EUR) for nothing!

But the malware don’t destroy any Shadow Volume or Restore Point in the system,

so, with luck and using some program that manage Shadows Volumes as Shadow

Explorer.

https://www.bleepingcomputer.com/download/shadowexplorer/

13

Or following this steps:

https://www.bleepingcomputer.com/tutorials/how-to-recover-files-and-folders-

using-shadow-volume-copies/

Another option is use a special program for recover files from raw disk as Recuva but

perhaps its not will recover all your files.

https://www.piriform.com/recuva

III. FINAL WORDS

A stupid malware that destroy information of enterprises and innocent people and

try steal money saying that is a ransomware. Bad coding style, a easy packer, only

need 1 hour of my time to reverse it and writing this report.

Valthek

14

